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A mathematical approach toward defining and
calculating the duration of the lag phase

Plotting the second derivative of a typical bacterial growth curve generates unique
maximum and minimum points. The maximum occurs at the end of the lag phase,
while the minimum is associated with the end of the exponential growth phase. It
appears that the maximum can be used to more accurately define and calculate the

duration of the lag phase.

When bacterial cells are transferred from
one environment to another, the cultures
typically display a period of delay in
growth termed the lag phase. During the
period, the cells modify their physiologi-
cal state to take advantage of their new
environment and begin replicating. The
duration of the lag phase is dependent on
an array of factors such as the identity
and phenotype of the bacterium, tem-
perature, nutrient availability, pH, and
water activity. The lag phase is of par-
ticular interest to food microbiologists
who attempt to extend the lag phase in-
definitely to prevent the growth of spoil-
age or pathogenic bacteria. A number of
different approaches have been used to
mathematically define and measure lag
phase durations (LPDs), including vari-
ous pragmatic estimations based on
somewhat arbitrary definitions.. For
example, we (Buchanan and Solberg
1972) have used the time for the initial
population density to increase twofold as
a definition of the lag phase. An alternate
approach that has been used widely is an

extrapolation of the portion of the growth
curve approximating a linear relation-
ship (i.e. exponential growth phase) back
to the initial inoculum level (Fig. 1).

The recent increased availability of
computing capability and curve-fitting
software has stimulated the use of sig-
moidal functions such as the Gompertz
and Logistics equations to mathemat-
ically depict bacterial growth curves
(Gibson et al. 1987, 1988, Buchanan et al.
1989, Zaika et al. 1989). As an example,
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Fig. 1. Example of determination of lag
phase duration (LPD) by graphic extrapo-
lation of slope of exponential growth phase to
population density at time of inoculation.
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Fig. 2 is a curve presented previously by
Buchanan and Phillips (1990) that de-
picts the growth of Listeria monocyto-
genes Scott A in tryptose phosphate broth
(Difco) incubated aerobically at 19°C.
Plate count data were used to generate
the growth curve using the Gompertz
equation (Gibson et al. 1987) in conjunc-
tion with curve fitting software. The
Gompertz equation generates an asym-
metrical sigmoid curve based on the re-
lationship,

L) =A + Ce—e-[B(t—M)]
where:

L(t) = log number of bacteria at time ¢,
A = log number ofinitial level of bacteria,
C =log increase in bacterial numbers
when culture achieves stationary growth,
M = time (h) when culture achieves its
maximum growth rate, B =relative
growth rate at time M, and T = time.

The LPD can then be estimated using the
relationship,
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Fig. 2. Growth curve from Buchanan and
Phillips (in press) for Listeria monocytogenes
Scott A cultured aerobically in tryptose phos-
phate broth at 19°C. Growth curve was gener-
ated using ‘best-fit’ Gompertz equation. Stars
indicate times associated with the maximum
and minimum values associated with curve
depicted in Fig. 4. A, C, B and M are Gompertz
parameters (see text). EGR = exponential
growth  rate, GT = generation  time,
LPD = lag phase duration, and MPD = maxi-
mum population density.

LPD=M - (1/B),

which uses the tangent at the maximum
absolute growth rate to extrapolate back
to lower asymptote to estimate the end of
the lag phase in a manner similar to the
graphic approach depicted in Fig. 1. The
LPD estimated in this manner for the
sample growth curve (Fig. 2) was 10-2 h.
While the above equation for LPD gener-
ally provides reasonable estimates, our
experience has indicated that difficulties
can occur if the LPD is short and the
exponential growth rate is relatively
slow. Further, small variations in expo-
nential growth rates tend to produce sub-
stantially larger changes in the derived
LPD. The purpose of this paper is to
propose an alternative mathematical
approach to calculating LPDs through
the use of the maximum associated with
the second derivative of the growth
curve.

The Gompertz equation will be used as
the basis for further discussions; how-
ever, it is important to note that the
general approach should be valid for
other mathematical models (e.g. logistics
equation) used to describe a sigmoidal
growth curve. In fact, the original obser-
vations concerning the relationships dis-
cussed below were based on plotting nu-
merical derivatives (i.e. AY and A[AY]) of
a hypothetical growth curve without the
aid of a mathematical model.

Plotting the rate of change in popu-
lation density versus time produces a
characteristic curve of the type depicted
in Fig. 3. Mathematically, this is equival-
ent to the first derivative of a function
describing the growth curve, and Fig. 3
was generated in this manner using the
first derivative of the Gompertz equation:

Conceptually, this can be viewed as plot-
ting the ‘velocity’ of the growth curve.
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Fig. 3. Plot of the first derivative of the Gom-
pertz equation for the growth curve depicted
in Fig. 2.

The maximum generated by this curve is
equivalent to the time when the rate of
growth is maximal. In the Gompertz
model, the maximum occurs at time M.

If the change in the growth velocities
vs time is plotted, the culture’s growth
‘acceleration’ can be generated. Alterna-
tively, this can be achieved by finding the
second derivative of the initial function.
For the Gompertz function, the second
derivative is:
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This relationship produces a character-
istic curve (Fig. 4) which has distinct
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Fig. 4. Plot of the second derivative of the
Gompertz equation for the growth curve
depicted in Fig. 2.
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maximum and minimum points. 'T'he

-equivalent points on the original growth

curve are marked by stars in Fig. 2. The
maximum falls at a point coinciding with
the end of the lag phase, suggesting that
this unique point can be used to non-
arbitrarily define the duration of the lag
phase. Specifically, the plot suggests that
LPD could be defined as the time interval
between the inoculation and the attain-
ment of the maximum change in growth
rate (i.e. maximum acceleration of the
growth curve).

The minimum associated with the plot
of the second derivative (Fig. 4) occurs at
a unique point approximating the end of
the exponential growth phase (Fig. 2).
This suggests that the curve can be used
to calculate the duration of the exponen-
tial growth phase by determining the
difference in time between the minimum
and maximum points. The point in time
when the second derivative crosses the x-
axis (acceleration = 0) is equivalent to
the time associated with the maximum in
Fig. 3, the time when the growth velocity
is maximal.

The times of the maximum and mini-’
mum in Fig. 4 can be determined graphi-
cally to provide estimates of the durations
of the lag and exponential growth phases.
Alternatively, the values can be deter-
mined mathematically by determining
the third derivative of the Gompertz
equation and then setting that equal to
zero. When this is done, two equations
are generated, one for the maximum and
the other for the minimum.

~B(t-M)
— e~ BRI _ 1.

Maximum e

—-B@-M)
= e—(B/2)(t—M) —1=0.

Minimum e

These equations can then be solved
implicitly, using any of a number of foot
finding procedures. In the current
example, we used the golden section
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search method (Bradley et al. 1977),
implemented on a microcomputer. The
value generated for the LPD using this
approach was 10-7h, compared to the
estimated value of 10-2 h obtained by ex-
trapolation of the slope of the exponential
growth phase. While the extrapolation
method provides a reasonable estimate of
LPD, the current approach should supply
investigators with a conceptual tool for
defining a mathematically unique point
for determining this kinetic parameter.
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